Thermodynamic optimization and performance study of supercritical CO2 thermodynamic power cycles with dry cooling using response surface method

نویسندگان

چکیده

This paper deals with thermodynamic optimization of supercritical CO2 recompression and partial cooling cycles operating at cycle maximum temperature 680°C pressure 250 bar. The primary goal to investigate the effects variation in heat sink (ambient air temperature), mass split fraction (X), minimum (Pmin) on thermal efficiency power cycles. Response surface method (RSM) is adopted create a second-order polynomial equation order develop relationship between selected decision variables find global optimum efficiency. In addition, classification most influencing parameter carried out using ANOVA approach. case cycle, results demonstrate that has greatest impact efficiency, owing low p-value high F-value, followed by pressure. significant temperature. combination for 20°C, 0.3182, 89 bar obtain highest 0.4963. 32.8 °C, 0.34, 76 bar, which an 0.4708.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic Analysis and Optimization of a Novel Cogeneration System: Combination of a gas Turbine with Supercritical CO2 and Organic Rankine Cycles (TECHNICAL NOTE)

Thermodynamic analysis of a novel combined system which is combination of methane fired gas turbine cogeneration system (CGAM) with a supercritical CO2 recompression Brayton cycle (SCO2) and an Organic Rankine Cycle (ORC) is reported. Also, a comprehensive parametric study is performed to investigate the effects on the performance of the proposed system of some important parameters. Finally, a ...

متن کامل

Thermodynamic Assessment and Parametric Study of a Supercritical Thermal Power Plant

A thermodynamic analysis of an operational 315 MW supercritical steam power plant (SPP) using the actual data is performed to assess the plant performance and identify the sites of energy losses and exergy destructions in each component of the plant. Various performance parameters such as component energy and exergy efficiencies, energy loss rate, exergy destruction rate, improvement potential ...

متن کامل

Thermodynamic Assessment and Optimization of Performance of Irreversible Atkinson Cycle

Although various investigations of Atkinson cycle have been carried out, distinct output power and thermal efficiencies of the engine have been achieved. In this regard, thermal efficiency, Ecological Coefficient of Performance (ECOP), and Ecological function (ECF) are optimized with the help of NSGA-II method and thermodynamic study.  The Pareto optimal frontier ...

متن کامل

Thermodynamic Performance of Regenerative Organic Rankine Cycles

ORC (Organic Rankine Cycle) has potential of reducing consumption of fossil fuels and has many favorable characteristics to exploit low-temperature heat sources. In this work thermodynamic performance of ORC with regeneration is comparatively assessed for various working fluids. Special attention is paid to the effects of system parameters such as the turbine inlet pressure on the characteristi...

متن کامل

Advanced Thermodynamic Analysis and Evaluation of a Supercritical Power Plant

A conventional exergy analysis can highlight the main components having high thermodynamic inefficiencies, but cannot consider the interactions among components or the true potential for the improvement of each component. By splitting the exergy destruction into endogenous/exogenous and avoidable/unavoidable parts, the advanced exergy analysis is capable of providing additional information to c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Communications in Heat and Mass Transfer

سال: 2023

ISSN: ['0735-1933', '1879-0178']

DOI: https://doi.org/10.1016/j.icheatmasstransfer.2023.106675